5 research outputs found

    Cuckoo search algorithm based for tunning both PI and FOPID controllers for the DFIG-Wind energy conversion system

    Get PDF
    Wind Energy has received great attention in this century. It influences the new power systems, adding new challenges to the power system expansion problem. Nowadays, double feed induction generator (DFIG) wind turbines are used majorly in wind farms, due to their advantages over other types. Therefore, the analysis of the system using this type has become very important. In this paper, a wind turbine modelling was introduced with suggested controllers, in order to enhance the system response, with respect to both pitch control and maximum output power. Cuckoo search algorithm (CSA), a meta-heuristic optimization technique, was implemented to determine the gains of a proportional-integral (PI) controller and fractional order proportional-integral-derivative (FOPID) controller to optimize the system, which considered three control loops: pitch, rotor-side converter, and grid-side converter control loop. Simulation results were determined using MATLAB/Simulink. The comparative analysis of the results showed that the PI Controller gave the simplest and the best response in case of the pitch and rotor-side control loops while the FOPID was the best when applied to the grid-side control loop. Based on the results and discussion, a suggestion of using a compination of each controller was introduced

    Switched capacitor based multi-level boost inverter for smart grid applications

    Get PDF
    To link DC power sources to an AC grid, converters are needed. Inverters are the power electronic devices, which are used for this purpose. Conventional inverters employ harmonic filters and transformers that are lossy and expensive. Multilevel inverters (MLIs) are an alternative to conventional ones, proposing reduced total harmonic distortion (THD), increased range of control, and inductor-less design. They generate a stepped waveform, with close similarity to a sine wave. Many distributed sources may be employed in a smart grid. If those sources have minimal THD, the filtering process could be reduced at the point of common coupling. This paper presents two switched capacitor based MLIs, proposing boost capability and low THD. Inverters have inherent charge balancing capability, which eliminates the need for auxiliary circuits and voltage sensors. Inverters switches are modulated using phase opposition disposition pulse-width modulation (PODPWM) method that ease the balancing of the voltage and decrease the losses of switching. Designs were verified by simulation and the output waveforms were introduced

    Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources

    No full text
    This paper presents a multi-objective economic-environmental dispatch (MOEED) model for integrated thermal, natural gas, and renewable energy systems considering both pollutant emission levels and total fuel or generation cost aspects. Two cases are carried out with the IEEE 30-bus system by replacing thermal generation units into natural gas units to minimize the amount of toxin emission and fuel cost. Equality, inequality like active, reactive powers, prohibited operating zones (POZs) which represents poor operation in the generation cost function, and security constraints are considered as system constraints. Natural gas units (NGUs) are modeled in detail. Therefore, the flow velocity of gas and pressure pipelines are also considered as system constraints. Multi-objective optimization algorithms, namely multi-objective Harris hawks optimization (MOHHO) and multi-objective flower pollination algorithm (MOFPA) are employed to find Pareto optimal solutions of fuel or generation cost and emission together. Furthermore, the technique for order preference by similarity to ideal solution (TOPSIS) is proposed to obtain the best value of Pareto optimal solutions. Three scenarios are investigated to validate the effectiveness of the proposed model applied to the IEEE 30-bus system with the integration of variable renewable energy sources (VRESs) and natural gas units. The results obtained from Scenario III with NGUs installed instead of two thermal units reveal that the economic dispatching approach presented in this work can greatly minimize emission levels as 0.421 t/h and achieve lower fuel cost as 796.35 $/h. Finally, the results obtained show that the MOHHO outperforms the MOFPA in solving the MOEED problem

    Reliable and Robust Observer for Simultaneously Estimating State-of-Charge and State-of-Health of LiFePO4 Batteries

    No full text
    Batteries are everywhere, in all forms of transportation, electronics, and constitute a method to store clean energy. Among the diverse types available, the lithium-iron-phosphate (LiFePO4) battery stands out for its common usage in many applications. For the battery’s safe operation, the state of charge (SOC) and state of health (SOH) estimations are essential. Therefore, a reliable and robust observer is proposed in this paper which could estimate the SOC and SOH of LiFePO4 batteries simultaneously with high accuracy rates. For this purpose, a battery model was developed by establishing an equivalent-circuit model with the ambient temperature and the current as inputs, while the measured output was adopted to be the voltage where current and terminal voltage sensors are utilized. Another vital contribution is formulating a comprehensive model that combines three parts: a thermal model, an electrical model, and an aging model. To ensure high accuracy rates of the proposed observer, we adopt the use of the dual extend Kalman filter (DEKF) for the SOC and SOH estimation of LiFePO4 batteries. To test the effectiveness of the proposed observer, various simulations and test cases were performed where the construction of the battery system and the simulation were done using MATLAB. The findings confirm that the best observer was a voltage-temperature (VT) observer, which could observe SOC accurately with great robustness, while an open-loop observer was used to observe the SOH. Furthermore, the robustness of the designed observer was proved by simulating ill-conditions that involve wrong initial estimates and wrong model parameters. The results demonstrate the reliability and robustness of the proposed observer for simultaneously estimating the SOC and SOH of LiFePO4 batteries.Peer reviewe
    corecore